martes, 15 de septiembre de 2015
1.5 Teorema de Moivre, potencias y extracciones de raíces de un número complejo.
El teorema de Moivre,– Laplace, trata de aproximar una distribución binomial a una normal. Se trata de un caso particular del Teorema central del límite.
En el fondo no es más que la forma más elemental del Teorema Central del Límite, el cual viene a precisar la Ley de los Grandes Números.
Fórmula para calcular las potencias zn de un número complejo z. El teorema de De Moivre establece que si un número complejo z = r(cos x + i sin x), entonces zn = rn(cos nx + i sin nx), en donde n puede ser enteros positivos, enteros negativos, y exponentes fraccionarios.
FÓRMULA DE MOIVRE
Aplicando la propiedad de la potencia de un número complejo, se obtiene la siguiente fórmula llamada Fórmula de Moivre:
(cos a + i sen a)n = cos na + i sen na
que es útil en trigonometría, pues permite hallar cos na y sen na en función de sen a y cos a.
Esta igualdad recibe el nombre de fórmula de Moivre, en honor del matemático francés Abraham de Moivre (1667-1754).
POTENCIA
La potencia es un producto de factores iguales, por tanto la regla es la misma que la de multiplicar.
El módulo se eleva a n
El argumento se multiplica por n
RADICACIÓN DE NÚMEROS COMPLEJOS
La operación de radicación es inversa a la de potenciación
Para un único número complejo zn , existen varios complejos z, que al elevarlos a la potencia n, nos da el mismo complejo zn.
Para hallar las raíces de un número complejo se aplica la fórmula de Moivre, teniendo en cuenta que para que dos complejos coincidan han de tener el mismo módulo y la diferencia de sus argumentos ha de ser un múltiplo entero de 360º.
Sea Ra un número complejo y considérese otro complejo R'a', tal que:
Ra = (R' a' )n = ((R' )n )n a'
Aunque esto parece aportar una infinidad de soluciones, nótese que si a k se le suma un múltiplo de n, al dividir el nuevo argumento, éste aparece incrementado en un número entero de circunferencias. Por tanto, basta con dar a k los valores 1, 2, 3, ..., n-1, lo que da un total de n - 1 raíces, que junto a k = 0 da un total de n raíces.
RAÍZ CUADRADA
Vamos a hallar :
Primero pasamos z=4+3i a forma polar:
z = 4+3i = 536.9º
La raíz cuadrada de z, tendrá de módulo la raíz cuadrada del módulo de z y de argumento, el de z dividido por 2.
Las dos soluciones de esta raíz cuadrada son:
Si k=0 --> z1=18.4º
Si k=1 --> z2=198.4º
Si le seguimos dando valores a k = 2, 3, 4, ... veremos que las soluciones que salen coinciden con las ya mencionadas, después de haber dado 1, 2, 3, ... vueltas a la circunferencia.
Todas estas operaciones que hemos hecho las puedes ver en la escena, y ver como quedan los vectores, tanto de z como de z1 y z2
RAÍZ CÚBICA
Primero pasamos z = 2+4i a forma polar: z = 2+4i = 4.563.4º
La raíz cúbica de z, tendrá de módulo la raíz cúbica del módulo de z y de argumento, el de z dividido por 3.
Las tres soluciones de esta raíz cúbica son:
Si k=0 --> z1=1.621.1º
Si k=1 --> z2=1.6141.1º
Si k=2 --> z3=1.6261.1º
Suscribirse a:
Comentarios de la entrada (Atom)
No hay comentarios.:
Publicar un comentario